Grid-independent Construction of Multistep Methods
نویسندگان
چکیده
A new polynomial formulation of variable step size linear multistep methods is presented, where each k-step method is characterized by a fixed set of k− 1 or k parameters. This construction includes all methods of maximal order (p = k for stiff, and p = k+1 for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step size methods; instead classical methods are obtained as fixed step size restrictions within a unified framework. The methods are implemented in Matlab, with local error estimation and a wide range of step size controllers. This provides a platform for investigating and comparing different multistep method in realistic operational conditions. Computational experiments show that the new multistep method construction and implementation compares favorably to existing software, although variable order has not yet been included. Mathematics subject classification: 65L06, 65L05, 65L80
منابع مشابه
On independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملSuperconvergence analysis of multistep collocation method for delay functional integral equations
In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملConstruction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications
Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...
متن کاملMultivariate geostatistical estimation using minimum spatial cross-correlation factors (Case study: Cubuk Andesite quarry, Ankara, Turkey)
The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are required to determine the exploitable blocks and their sequence of extraction. However, the number of samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at unknown locations. Cokriging has been traditionally used in the estimation of spa...
متن کامل